140 research outputs found

    Commissioning of the electron injector for the AWAKE experiment

    Get PDF
    The advanced wakefield experiment (AWAKE) at CERN is the first proton beam-driven plasma wakefield acceleration experiment. The main goal of AWAKE RUN 1 was to demonstrate seeded self-modulation (SSM) of the proton beam and electron witness beam acceleration in the plasma wakefield. For the AWAKE experiment, a 10-meter-long Rubidium-vapor cell together with a high-power laser for ionization was used to generate the plasma. The plasma wakefield is driven by a 400 GeV/c proton beam extracted from the super proton synchrotron (SPS), which undergoes a seeded self-modulation process in the plasma. The electron witness beam used to probe the wakefields is generated from an S-band RF photo-cathode gun and then accelerated by a booster structure up to energies between 16 and 20 MeV. The first run of the AWAKE experiment revealed that the maximum energy gain after the plasma cell is 2 GeV, and the SSM mechanism of the proton beam was verified. In this paper, we will present the details of the AWAKE electron injector. A comparison of the measured electron beam parameters, such as beam size, energy, and normalized emittance, with the simulation results was performed

    Suppression of coherent synchrotron radiation induced emittance growth during electron-beam injection into plasma wakefields

    Get PDF
    Coherent synchrotron radiation (CSR) is a collective effect that mainly occurs when the trajectory of an electron beam is bent in a dipole magnet. It affects the electron beam by distorting the phase space along its slice distribution, which leads to emittance growth. Therefore, CSR should be suppressed to transport electron beams without further degradation of the emittance. In linear optics, CSR-induced emittance can be suppressed by controlling the Twiss parameters along the electron-beam transfer line. However, owing to some physical constraints, transfer-line optics may be governed by higher-order terms in the transfer map, and the use of a sextupole magnet to suppress these terms would be very challenging for low-energy spread and low-emittance beams. Therefore, without using a sextupole magnet, we estimate the region of the Twiss parameters where the first-order terms are dominant along the transfer line by introducing chromatic amplitude. In this region, we can apply the suppression condition that is valid in a linear matrix system. This minimization of the emittance growth becomes even more important when the electron-beam transfer line is used for external injection into a plasma wakefield because mismatched beam conditions could induce an additional increase in the emittance during the acceleration. In this paper, we discuss a method of emittance-growth minimization driven by the CSR effect along the transfer line, which is particularly used for electron-beam injection into plasma wakefields. In addition, using the particle-in-cell simulation, we investigate the evolution of electron beam parameters during the acceleration through plasma wakefields in the presence of the CSR effect on the electron beam. We confirm that the beam emittance growth is minimized when the CSR effect is properly controlled. Otherwise, it is found that 11%?32% emittance growths by the CSR effect along the transfer line lead to additional 20%?40% increase of the maximum slice emittance

    The transverse and longitudinal beam characteristics of the phin photo-injector at Cern

    No full text
    International audienceThe laser driven RF photo-injectors are recent candidates for high-brightness, low-emittance electron sources. One of the main beam dynamics issues for a high brightness electron source is the optimization of beam envelope be- havior in the presence of the space charge force in order to get low emittance. Within the framework of the second Joint Research Activity PHIN of the European CARE pro- gram, a new photo-injector for CTF3 has been designed and installed by collaboration between LAL, CCLRC and CERN. Beam based measurements have been made dur- ing the commissioning runs of the PHIN 2008 and 2009 including measurements of the emittance, using multi-slit technique. The demonstration of the high charge and the stability along the long pulse train are between the goals of this photo-injector study as also being important issues for CTF3 and the CLIC drive beam. In this work the photo-injector will be described and the first beam mea- surement results will be presented and compared with the PARMELA simulations

    The electron accelerator for the AWAKE experiment at CERN

    Get PDF
    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented

    Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    Full text link
    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).Comment: 61 page

    ACHIEVEMENTS IN CTF3 AND COMMISSIONING STATUS

    Get PDF
    Abstract The aim of the latest CLIC test facility CTF3, built at CERN by an international collaboration, is to prove the main feasibility issues of the CLIC two-beam acceleration technology. Several of the main goals have been already achieved in the past years, like the full-loading linac operation mode and the delay loop principle. During 2008 also the combiner ring concept has been experimentally proven and the recombined beam has been used to generate the RF power. In parallel in the fall of the year also the probe beam line commissioning had started. CTF3 LAYOUT The CLIC technology, based on the two-beam acceleration schem

    First Results from Commissioning of the Phin Photo Injector for CTF3

    Get PDF
    Installation of the new photo-injector for the CTF3 drive beam (PHIN) has been completed on a stand-alone test bench. The photo-injector operates with a 2.5 cell RF gun at 3 GHz, using a Cs2Te photocathode illuminated by a UV laser beam. The test bench is equipped with transverse beam diagnostic as well as a 90-degree spectrometer. A grid of 100 micrometer wide slits can be inserted for emittance measurements. The laser used to trigger the photo-emission process is a Nd:YLF system consisting of an oscillator and a preamplifier operating at 1.5 GHz and two powerful amplifier stages. The infrared radiation produced is frequency quadrupled in two stages to obtain the UV. A Pockels cell allows adjusting the length of the pulse train between 50 nanoseconds and 50 microseconds. The nominal train length for CTF3 is 1.272 microseconds (1908 bunches). The first electron beam in PHIN was produced in November 2008. In this paper, results concerning the operation of the laser system and measurements performed to characterize the electron beam are presented

    Commissioning of Beam Instrumentation at the Cern Awake Facility After Integration of the Electron Beam Line

    Get PDF
    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is a project at CERN aiming to accelerate an electron bunch in a plasma wakefield driven by a proton bunch. The plasma is induced in a 10 m long rubidium vapor cell using a pulsed Ti:Sapphire laser, with the wakefield formed by a proton bunch from the CERN Super Proton Synchrotron (SPS). A 16 MeV electron bunch is simultaneously injected into the plasma cell to be accelerated by the wakefield to energies in the GeV range over this short distance. After successful runs with the proton and laser beams, the electron beam line was installed and commissioned at the end of 2017 to produce and inject a suitable electron bunch into the plasma cell. To achieve the goals of the experiment, it is important to have reliable beam instrumentation measuring the various parameters of the proton, electron and laser beams. This contribution presents the status of the beam instrumentation in AWAKE and reports on the performance achieved during the AWAKE runs in 2017
    • 

    corecore